2,204 research outputs found

    Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna

    Full text link
    We demonstrate how the controlled positioning of a plasmonic nanoparticle modifies the photoluminescence of a single epitaxial GaAs quantum dot. The antenna particle leads to an increase of the luminescence intensity by about a factor of eight. Spectrally and temporally resolved photoluminescence measurements prove an increase of the quantum dot's excitation rate. The combination of stable epitaxial quantum emitters and plasmonic nanostructures promises to be highly beneficial for nanoscience and quantum optics.Comment: 5 pages, 4 figure

    Decision problems for word-hyperbolic semigroups

    Get PDF
    This paper studies decision problems for semigroups that are word-hyperbolic in the sense of Duncan & Gilman. A fundamental investigation reveals that the natural definition of a `word-hyperbolic structure' has to be strengthened slightly in order to define a unique semigroup up to isomorphism. The isomorphism problem is proven to be undecidable for word-hyperbolic semigroups (in contrast to the situation for word-hyperbolic groups). It is proved that it is undecidable whether a word-hyperbolic semigroup is automatic, asynchronously automatic, biautomatic, or asynchronously biautomatic. (These properties do not hold in general for word-hyperbolic semigroups.) It is proved that the uniform word problem for word-hyperbolic semigroup is solvable in polynomial time (improving on the previous exponential-time algorithm). Algorithms are presented for deciding whether a word-hyperbolic semigroup is a monoid, a group, a completely simple semigroup, a Clifford semigroup, or a free semigroup.PostprintPeer reviewe

    Interoperability in the OpenDreamKit Project: The Math-in-the-Middle Approach

    Full text link
    OpenDreamKit --- "Open Digital Research Environment Toolkit for the Advancement of Mathematics" --- is an H2020 EU Research Infrastructure project that aims at supporting, over the period 2015--2019, the ecosystem of open-source mathematical software systems. From that, OpenDreamKit will deliver a flexible toolkit enabling research groups to set up Virtual Research Environments, customised to meet the varied needs of research projects in pure mathematics and applications. An important step in the OpenDreamKit endeavor is to foster the interoperability between a variety of systems, ranging from computer algebra systems over mathematical databases to front-ends. This is the mission of the integration work package (WP6). We report on experiments and future plans with the \emph{Math-in-the-Middle} approach. This information architecture consists in a central mathematical ontology that documents the domain and fixes a joint vocabulary, combined with specifications of the functionalities of the various systems. Interaction between systems can then be enriched by pivoting off this information architecture.Comment: 15 pages, 7 figure
    corecore